

 SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech IV Year I Semester Supplementary Examinations August-2022 DIGITAL IMAGE PROCESSING (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 6 (Answer all Five Units 5 x 12 = 60 Marks) UNIT-1 1 a List out the fundamental steps in digital image processing which can be applied to images. b Explain the important terms related to Imaging Geometry with suitable applications. OR 2 a Discuss the process of image sense and acquisition along with suitable diagrams. b Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. i) Arithmetic operations on digital images with relevant expressions and diagrams. i) Arithmetic operations of 2D – Unitary transform. Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the function each part. 	6M 6M 6M
 B.Tech IV Year I Semester Supplementary Examinations August-2022 DIGITAL IMAGE PROCESSING (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 6 (Answer all Five Units 5 x 12 = 60 Marks) UNIT-I a List out the fundamental steps in digital image processing which can be applied to images. b Explain the important terms related to Imaging Geometry with suitable applications. OR a Discuss the process of image sense and acquisition along with suitable diagrams. b Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. i) Arithmetic operations ii) Logical operations. UNIT-II a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain and give the expression. TITI-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M 6M 6M
DIGITAL IMAGE PROCESSING (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 6 (Answer all Five Units 5 x 12 = 60 Marks) UNIT-1 1 a List out the fundamental steps in digital image processing which can be applied to images. b Explain the important terms related to Imaging Geometry with suitable applications. OR 2 a Discuss the process of image sense and acquisition along with suitable diagrams. b Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. i) Arithmetic operations ii) Logical operations. UNIT-II 3 a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the	6M 6M 6M
 Time: 3 hours Max. Marks: 6 (Answer all Five Units 5 x 12 = 60 Marks) UNIT-1 a List out the fundamental steps in digital image processing which can be applied to images. b Explain the important terms related to Imaging Geometry with suitable applications. OR a Discuss the process of image sense and acquisition along with suitable diagrams. b Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. i) Arithmetic operations ii) Logical operations. UNIT-II a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M 6M 6M
 (Answer all Five Units 5 x 12 = 60 Marks) <u>UNIT-1</u> a List out the fundamental steps in digital image processing which can be applied to images. b Explain the important terms related to Imaging Geometry with suitable applications. OR a Discuss the process of image sense and acquisition along with suitable diagrams. b Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. i) Arithmetic operations ii) Logical operations. <u>UNIT-II</u> a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. <u>UNIT-III</u> 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. <u>UNIT-IV</u> 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M 6M 6M
 List out the fundamental steps in digital image processing which can be applied to images. b Explain the important terms related to Imaging Geometry with suitable applications. OR 2 a Discuss the process of image sense and acquisition along with suitable diagrams. b Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. i) Arithmetic operations ii) Logical operations. UNIT-II 3 a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain and give the expression. 	6M 6M
 1 a List out the fundamental steps in digital image processing which can be applied to images. b Explain the important terms related to Imaging Geometry with suitable applications. OR 2 a Discuss the process of image sense and acquisition along with suitable diagrams. b Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. i) Arithmetic operations ii) Logical operations. UNIT-II 3 a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M 6M
 b Explain the important terms related to Imaging Geometry with suitable applications. OR a Discuss the process of image sense and acquisition along with suitable diagrams. b Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. i) Arithmetic operations ii) Logical operations. UNIT-II 3 a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. CINIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M
 2 a Discuss the process of image sense and acquisition along with suitable diagrams. b Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. i) Arithmetic operations ii) Logical operations. 3 a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	
 b Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. i) Arithmetic operations ii) Logical operations. UNIT-II 3 a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M
 3 a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	
 3 a List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform. b Determine the image basis function of Walsh Transform when N = 4. OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	
 OR 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M
 4 a Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT. b Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M
 expression. UNIT-III 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M
 5 a Define histogram and discuss the histogram four basic image types. b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M
 b Illustrate the procedure for histogram process and list out the uses of histogram. OR 6 a Define the image enhancement in frequency domain and give the expression. Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	
 OR 6 a Define the image enhancement in frequency domain and give the expression. b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M
 b Illustrate the smoothing filters in frequency domain along with the required expressions. UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the 	6M
UNIT-IV 7 a Identify parts of the degradation/restoration model in image processing and explain the	6M
7 a Identify parts of the degradation/restoration model in image processing and explain the	6M
tunction each part	6M
b Compare the Rayleigh noise and Erlang noise with proper PDF expression.	6M
OR	
8 a Explain the threshold-based segmentation methods with suitable examples.b Label the parts of Template matching and mention its function.	6M 6M
UNIT-V	01/1
9 a Define Image Compression and outline the importance of the image compression to the industry	6M
industry.b Explain the coding redundancy and spatial/Temporal redundancy with suitable examples.	6M
OR 10 a Illustrate the procedure of the variable length coding along with suitable example.	6M
 b Demonstrate the steps for Measuring Image Information in image compression techniques. 	

*** END ***